Pharmacometric modelling of antimalarial drugs in development

Professor of Clinical Pharmacology | University of Oxford
Head of Clinical Pharmacology | Mahidol-Oxford Tropical Medicine Research Unit | Thailand
PK/PD of antimalarial drug combinations

Symptomatic infection

Limit of detection

Therapeutic success

MIC: Minimum Inhibitory Concentration

Release of merozoites from the liver

10 × multiplication / 48 hrs

Artemisinin

Partner drug

Total parasite count

Drug concentration (ng/mL)

1.E+10
1.E+09
1.E+08
1.E+07
1.E+06
1.E+05
1.E+04
1.E+03
1.E+02
1.E+01
1.E+00

0 1 2 3 4 5 6

Time (weeks)

MIC

Post-prophylactic effect
Dose-optimisation of antimalarial drugs

Uncomplicated *falciparum* malaria

Piperaquine exposure

- **Standard oral dose**
 - Lower exposures in small children

Piperaquine exposure

- **Optimised oral dose**
 - Equivalent exposures in all weight groups

Dihydroartemisinin exposure

- **Standard parenteral dose**
 - Lower exposures in small children

Dihydroartemisinin exposure

- **Optimised parenteral dose**
 - Equivalent exposures in all weight groups

Severe *falciparum* malaria

Many of the antimalarial drugs were introduced at the wrong dose, especially for children
Novel methodologies for dose-selection

- Low non-curative single dose to non-immune volunteers/patients
- Frequent parasite measurements
- Frequent drug measurements
- Rescue treatment before symptomatic malaria
- Ideal data for PK/PD modelling
 - MPC determination
 - MIC determination
 - Evidence-based dose selection
 - Drug combination selection

White, AAC, 2013
A novel study to estimate the MIC in patients

- An adaptive design and PK/PD modelling approach was used to determine the MIC of cipargamin (KAE609) in patients
- Vietnamese adults with uncomplicated *P. falciparum* malaria (n=25)
- 30 mg, 20 mg, 15 mg or 10 mg single dose of cipargamin
- Extensive blood sampling was carried out for PK, microscopy and qPCR measurements
- Artemisinin-based combination therapy was administered as rescue treatment (i.e. rising parasite levels but before symptoms)
- NONMEM
Pharmacokinetic properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Population estimate (RSE)</th>
<th>IIV CV% (RSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL/F (L/h)</td>
<td>1.72 (5.69)</td>
<td>18.5 (12.4)</td>
</tr>
<tr>
<td>V/F (L)</td>
<td>40.6 (4.71)</td>
<td>-</td>
</tr>
<tr>
<td>No tran comp</td>
<td>3 fix</td>
<td>-</td>
</tr>
<tr>
<td>Ka (h⁻¹)</td>
<td>1.65 (25.2)</td>
<td>176 (30.4)</td>
</tr>
<tr>
<td>MTT (h)</td>
<td>0.867 (12.6)</td>
<td>65.2 (13.5)</td>
</tr>
<tr>
<td>F (%)</td>
<td>100 fix</td>
<td>26.2 (25.3)</td>
</tr>
<tr>
<td>σ (%)</td>
<td>17.5 (10.3)</td>
<td>-</td>
</tr>
</tbody>
</table>

- Body weight allometrically on CL/F and V/F
- Dose-proportional PK

![Graph showing pharmacokinetic properties](image)
Pharmacodynamic data considerations

- qPCR is 100-1,000 times more sensitive than microscopy
- Low density persistent parasitaemia
 - Microscopy: observational bias
 - qPCR: asexual and sexual parasite measurements (DNA-based)
- Censoring of data
- Pool microscopy and qPCR data
Final model describing PK and PD

- Fixed growth rate (10-fold per cycle)
- Dormant parasite population (1%)
- Increased E_{MAX} with increasing dose

$$dP_{NS}\frac{dt}{dt} = -P_{NS} \times K_{ACT}$$

$$dP_S\frac{dt}{dt} = P_S \times K_{GROW} - P_S \times K_{KILL} + P_{NS} \times K_{ACT}$$
Dose-selection based on the final PK/PD model

23 out of 25 patients characterised accurately as cured or recrudescent

Dose-optimisation in silico

Mono therapy

50 mg KAE609 + partner drug (100-fold kill/48h)

Combination therapy
Concluding remarks

- Many of the currently used antimalarial drugs were introduced at the wrong doses, especially in young children
- Pharmacometric approaches can be used to identify patient groups at particular risk of therapeutic failures and emergence of parasite resistance
- Pharmacometric approaches can be used to optimise the dosing in these sub-populations of patients
- The presented novel study design, analysed with a pharmacometric approach, can provide an evidence-based tool for:
 - Dose selection
 - Dose strategy selection
 - Drug combination selection
Acknowledgements

- All patients that participated in this study

Co-investigators:

- Oxford University Clinical Research Unit – Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam: Tran Tinh Hien, Nguyen Thanh Thuy-Nhien, Nhu Thi Hoa, Phung Duc Thuan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok Thailand: Nicholas J. White, François Nosten
- Novartis Pharma AG, Basel, Switzerland: Baldur Magnusson, Jay Prakash Jain, Kamal Hamed
Thank you for your attention
Pharmacodynamic data censoring

All data

Censored data

Cured patient

Recrudescent patient

ID1

ID2

Time (days)

Micro

qPCR

Gamet

Ring

Total parasite biomass

Time (days)

0 10 20 30 40

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

0 10 20 30 40

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

0 10 20 30 40

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

0 10 20 30 40

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

MIC

Recrudescent patient

ID2

Cured patient

ID1