Introduction

- Ivabradine, a selective inhibitor of the pacemaker current (If), is used for heart failure and coronary heart disease, and mainly metabolized by cytochrome P450 3A enzyme to S1898, an active metabolite.
- The purpose of this study was to explore the plasma and urine pharmacokinetics (PK) of ivabradine and S18982 by nonlinear mixed effect modeling in healthy Korean volunteers.

Method

- PK data from a phase I clinical trial for ivabradine where 35 healthy, Korean, adult males participated were used for this modeling analysis.
- The subjects received single and then multiple oral doses of Ivabradine at 2.5 (n=17), 5 (n=9), and 10 mg (n=9), and blood and urine were collected serially for PK.
- Plasma and urine concentrations of ivabradine and S18982 were measured using validated LC/MS-MS.
- Plasma and urine PK of ivabradine and S18982 were analyzed by nonlinear mixed effect modeling implemented in NONMEM (version 7.3).

Result

- The plasma PK of ivabradine was best described by a two-compartment model with mixed zero- and first-order absorption, linked to a two-compartment model for S18982.
- The final PK model described plasma concentration and cumulative amount excreted urine of ivabradine and S18982, reasonably well.
- The introduction of inter-occasional variabilities and period as covariate into absorption related parameters improved the model fit.

Conclusion

- We developed a population PK model describing the plasma and urine PK of ivabradine and S18982 in healthy Korean adult males.
- This model might be useful for predicting the plasma and urine PK of ivabradine, potentially helping to identify the optimal dosing regimens in various clinical situations.

Funding Source

The clinical trial data used in this study was sponsored by the Institut de Recherches Internationales Servier (I.R.I.S.), France.